Global Analysis of Age-structured Within-host Virus Model

نویسندگان

  • Cameron J. Browne
  • Sergei S. Pilyugin
  • Pierre Magal
  • SERGEI S. PILYUGIN
چکیده

A mathematical model of a within-host viral infection with explicit age-since-infection structure for infected cells is presented. A global analysis of the model is conducted. It is shown that when the basic reproductive number falls below unity, the infection dies out. On the contrary, when the basic reproductive number exceeds unity, there exists a unique positive equilibrium that attracts all positive solutions of the model. The global stability analysis combines the existence of a compact global attractor and a Lyapunov function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Center manifold analysis and Hopf bifurcation of within-host virus model

A mathematical model of a within-host viral infection is presented. A local stability analysis of the model is conducted in two ways. At first, the basic reproduction number of the system is calculated. It is shown that when the reproduction number falls below unity, the disease free equilibrium (DFE) is globally asymptotically stable, and when it exceeds unity, the DFE is unstable and there ex...

متن کامل

An Age-Structured Within-Host Model for Multistrain Malaria Infections

In this paper we propose an age-structured malaria within-host model taking into account multi-strains interaction. We provide a global analysis of the model depending upon some threshold T0. When T0 ≤ 1, then the disease free equilibrium is globally asymptotically stable and the parasites are cleared. On the contrary if T0 > 1, the model exhibits the competition exclusion principle. Roughly sp...

متن کامل

Dynamical behavior of a stage structured prey-predator model

In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...

متن کامل

Multistage Modified Sinc Method for Solving Nonlinear Dynamical Systems

The sinc method is known as an ecient numerical method for solving ordinary or par-tial dierential equations but the system of dierential equations has not been solved by this method which is the focus of this paper. We have shown that the proposed version of sinc is able to solve sti system while Runge-kutta method can not able to solve. Moreover, Due to the great attention to mathematical mod...

متن کامل

Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.

Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host's immune system influences the pathogen's transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence-transmission trade-offs an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013